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Abstract. We consider a variation of the classic Hotelling-Downs model
with the addition of facility synergies. Unlike in the classic model, where
clients always use the facility closest to them, we study clients who prefer
locations with many facilities to those with few facilities while simulta-
neously attempting to minimize their distance as well. We show that, in
contrast with the classic model, Nash equilibria for our setting always
exist, and, in fact, there always exists a Nash equilibrium such that the
sum of client costs equals the cost of the optimum solution. Our main
result is a bound of 225

64
≈ 3.516 on the Price of Anarchy for our model,

showing that, although the client behavior is more complex in our model
(and often more realistic depending on the application), the cost of Nash
equilibrium solutions still cannot be much worse than the cost of the
optimum facility placement.

Keywords: Price of Anarchy · Hotelling Games · Competitive Facility
Location.

1 Introduction

Beginning with Hotelling’s seminal work almost a century ago [22], the Hotelling-
Downs model has grown to become one of the classics of game theory. Originally
defined using the story of ice cream vendors choosing their placement along a
beach, it has been since used to model a variety of applications, including the
strategic placement of facilities and firms, as well as the formation of political
parties and the ideological placement of strategic political candidates.

In most existing work on the topic, there are clients located along some
interval X, and a set of k facilities or firms. Each facility can individually choose
a location xi ∈ X where it will be placed; it is allowed to choose any location in
X. In the classic model, each client simply utilizes the closest facility to them, i.e.,
a client located at x would shop at the position xi with a facility such that |x−xi|
is as small as possible. Note that in political and social choice applications, this
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corresponds to a voter/client supporting the party/candidate which is closest
to them. Knowing this client behavior, the goal of each facility is typically to
position themselves in order to maximize the total fraction of clients using their
facility. If multiple facilities choose the same location, then they typically share
the clients equally. More precisely, let ui represent the fraction of clients which
use location xi, i.e., the fraction of clients for whom xi is the closest location
of any point with a facility at it; and let ni be the number of facilities at xi.
Then, the utility of a facility located at xi is defined to be ui/ni: it is the total
fraction of clients which use that location, divided by the number of facilities
located there.

Many important variations of the above classic model have been studied for
many diverse applications, as we discuss in the Related Work section. However,
an important aspect missing from existing work is that of facility synergy. In
many realistic applications, a client does not simply wish to go to the closest
facility, but prefers to go to a location with multiple facilities if possible. Consider,
for example, someone who wishes to go shopping for a luxury good, such as
designer shoes. They could go to a nearby store, but they may not find something
that suits them. Or they could instead go to a collection of stores all near each
other, even if these stores are farther away. Similarly, when people need to buy
goods without knowing exactly what they are looking for, they are much more
likely to go to a shopping mall with its many options than simply to the closest
store. Such behavior does not only apply to shopping, of course. When a group
of friends wants to go to a restaurant or for entertainment but does not want
to decide on a place in advance, they are likely to go to a place with a large
collection of options, even if it is farther away. When joining a group (such as
patients choosing a hospital or a medical practice, or graduate students choosing
a research group), there is a benefit to joining a larger group since there will
be many options and more support, even if there is a smaller group which is
technically closer to your interests. This also applies to political parties: while a
small party may exist which is closer to your views, people will often join larger
parties due to the benefits which come from having a large number of powerful
representatives who are members of your party.

In this paper, we begin the study of facility synergy by considering the sim-
plest model possible, which we believe captures the basic fundamental differences
with the classic model without synergy. To model the fact that clients prefer to
go to a location with more facilities but still care about the distance as well, we
define the client cost function c(x, xi) = |x− xi|/ni to be the cost that a client
positioned at x experiences for going to location xi with ni facilities located
there. Each client then uses the location that minimizes their cost c(x, xi), not
simply the distance. Thus, clients prefer to use closer facilities, but at the same
time prefer locations which contain more facilities. ui is still defined as before:
it is the total fraction of clients who use location xi, and thus the utility that
each facility receives is still just ui/ni.
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1.1 Our Contributions

As done previously for the classic Hotelling-Downs model, our goal in this paper
is to understand the structure of Nash equilibrium solutions which result from
the self-interested behavior of the facilities. We are especially interested in the
relationship of Nash equilibrium solutions with the optimum facility placement,
as quantified by Price of Anarchy and Price of Stability measures.4 In other
words, we are interested in quantifying how much the self-interest of the facilities
hurts the clients as compared to facilities being placed by some central and
altruistic decision maker. Here, the cost of a solution is defined as the total cost
of all the clients, as in most previous work.5

Although similar to the classic model, the difference in client behavior in our
model results in very different properties of Nash equilibria and behavior of the
facilities. This mainly stems from the fact that, unlike in the classic model where
a set of clients using a particular facility location always forms a contiguous
interval, in our model these sets can be discontinuous. In other words, while
some interval of clients next to a set of facilities at xi will indeed use location
xi, there can be other intervals far away from xi which will also use xi, as we
discuss in Section 2. We call such intervals bubbles. The existence of bubbles
greatly changes the structure of Nash equilibrium solutions and requires new
techniques for their analysis. Another notable difference which complicates the
analysis is that in the classic model, an addition of an extra facility always
decreases the utilities of all the other facilities; in our model, however, it can
decrease the utilities of some, but improve the utilities of others due to clients
taking into account facility synergy. Thus, the facility utilities are non-monotone
with respect to the addition of other facilities.

Despite the added complexity of the model, we show that in some ways the
Nash equilibrium properties are improved in our setting. We first prove that
Nash equilibrium solutions always exist in our model, and in fact that the Price
of Stability always equals 1, i.e., that there always exists a Nash equilibrium with
the total client costs being as small as possible. In contrast, it is well-known
that a Nash equilibrium does not always exist in the classic Hotelling-Downs
model [14], and further that even when it does exist, it can be as much as a
factor of 2 different in cost from the optimum solution.

We then proceed to our main result, which is an analysis of Price of Anarchy
for our model. In the classic Hotelling-Downs model, where clients simply go to
the closest facility, the Price of Anarchy is at most 2 [19]. Despite the existence
of bubble intervals and other differences in our model behavior, we are able to
prove a bound of 225

64 ≈ 3.516 on the Price of Anarchy in our model. Doing this

4 The Price of Anarchy [23] is the ratio between cost of the worst Nash equilibrium
and the cost the optimum facility placement, while the Price of Stability [3] is the
same ratio but for the best Nash equilibrium instead of the worst one.

5 Note that the total sum of utilities of the facilities for our model is always the same,
since every client uses some facility location. This is in contrast to previous work
such as [17]. However, the cost of the clients can vary greatly depending on the
solution.
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requires showing various structural results about the properties of Nash equilib-
rium solutions, such as that the size of bubble intervals is bounded compared to
adjacent intervals. Our Price of Anarchy bound shows that although the client
behavior is more complex in our model (and often more realistic depending on
the application), the cost of Nash equilibrium solutions still cannot be too much
worse as compared with the optimum facility placement.

1.2 Related Work

Since Hotelling’s seminal work, Stability in Competition [22], countless varia-
tions of the original model have been studied in depth. Downs extended the
Hotelling model to voting patterns in a space of political ideology, realizing the
term Hotelling-Downs Model [11]. The model was again expanded upon by [14]
who extended the model from strictly analyzing duopolies towards arbitrary n-
facility markets and characterized when a pure Nash equilibrium exists and when
it does not.6 This established that the classic model lacks any pure Nash equi-
librium for n = 3, has a unique pure Nash equilibrium for n = 2, 4, 5 and has an
infinite number of pure Nash equilibria for n > 5. Due to the popularity of this
model, we refer to the recent survey by [12] (as well as [2,16,21], and [28]) for a
larger overview of the breadth of traditional Hotelling-Downs models that have
been studied. These surveys denote trends in model variants, including Grait-
son’s enumerated changes in the number of firms, the shapes of the demand
curves, and the types of spaces [21]. Depending on the literature, these vari-
ants have sometimes been referred to as Facility Location Games, Competitive
Facility Location Games, and Voronoi Games — all with essentially the same
meaning; however, to minimize confusion, we will refer to them as Hotelling-
Downs Games. However, throughout this extensive body of work, we are not
aware of any analysis of our client behavior in which clients prefer locations
with more facilities.

Many variations of the model involve changing the metric space, X, that
clients and facilities occupy. This is often done with the extension to a cir-
cle instead of an interval, thereby inducing periodic boundary conditions, as
studied by [14] and [29]. Further, a logical next step includes location games
in 2-dimensional spaces, e.g. [4], or in nonlinear or discrete markets, including
graphs [25], networks [19], and finite sets of locations [26].

Other variations change how facilities attract clients or how said clients
choose the facility they will utilize. For example, [17] propose a variation on the
original Hotelling-Downs model in which all facilities have a limited attraction
interval and “the support of clients that fall in the attraction interval of several
agents is randomly shared among the latter.” Similarly, [30] study a model akin
to that of [17] formalized with an attraction width wi for each facility and later
extend this model to results over arbitrary distributions of clients. These mod-
els can both be considered variants of the general set of probabilistic Shapley
6 This characterization was recently amended by [7], who also gave numerous results

about the computational complexity of finding a Nash equilibrium.
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Facility Location Games from [5]. A modification from the client perspective is
captured by [10], who analyze a model where each client has a randomly dis-
tributed tolerance interval and they utilize the nearest facility in this interval,
if one exists. This captures the concept that clients may not utilize the closest
facility if it is too far from them. One type of variation that is close in spirit
to our work is that of Hotelling-Downs models that take into account network
externalities, such as the client cost function being a linear combination of dis-
tance and facility congestion as in [18,27], or of distance and facility popularity
as in [20].

There are also similar models comprising of multi-unit and multi-stage games
including those where single agents can place multiple facilities concurrently [6],
or in consecutive rounds [1]. Another multi-stage variation includes [24] in which
the first round involves facilities choosing locations on a graph and a second stage
in which clients distribute their purchasing power. Likewise, multi-stage games
include those where location choice is followed by additional differentiation such
as price competition leading to “non-symmetric” facilities [15]. There is also a
somewhat separate direction of research (see, e.g., [9] and the references therein)
which uses a lot of similar terminology of facility location games but is concerned
more with developing centralized mechanisms for placing all the facilities based
on the locations reported by the clients, with the clients being able to lie about
their true locations.

For these game-theoretic models, facility utility functions are generally either
the more popular “support maximizers” function (utility is proportional to clients
received) that is employed by our model or a “winner-takes-all” function that
is generally reserved for modeling political landscapes [17, 30]. Likewise, social
welfare is generally modeled as minimizing the social cost due to client travel or
prices, but it is occasionally defined as client “participation” in models that are
not guaranteed to serve all clients as in [17]. Lastly, the distribution of clients
in the space is generally uniform across this body of work; however, there are
exceptions that derive results for arbitrary or random distributions of clients
such as [26], [8], and others.

Generally, the results derived in existing work focus on the existence and
uniqueness of Nash equilibria, the optimal solutions, and the efficiency of said
equilibria. A useful measure of the efficiency of equilibria are what are known
as the Price of Stability for measuring the best-case efficiency [3], and Price of
Anarchy for measuring the worst-case efficiency [13,23]. This is our focus as well.

2 Model and Basic Results

Classic Hotelling-Downs Model First, let us recall the classic Hotelling-Downs
model. We are given an interval X; without loss of generality, let us assume that
X = [0, 1]. There are k facilities. Each facility can choose where in the interval
X it should be placed; it is allowed to choose any location in X. In the version
of the problem we study, multiple facilities are allowed to place themselves at
the same location; in this case, we say that a stack of ni facilities is located at
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xi ∈ X. A facility placement is a set of locations xi and number of facilities ni

at each of these locations, so that
∑

i ni = k.7
There are clients located in X; as in much of the previous work, we assume

that the clients form a continuum and are uniformly distributed in X. In the
classic model, the clients would utilize the closest facility to them, i.e., a client
located at x would use position xi with a facility so that d(x, xi) is as small
as possible, where d(x, xi) is simply the distance |x − xi|. For a given facility
placement, let Ui be the set of clients who use the location xi, i.e., Ui = {x ∈
X : i = argminj d(x, xj)}. Then ui (the size of Ui) is the total fraction of clients
using location xi.8 The utility of a facility located at xi is defined to be ui/ni: it
is the total fraction of clients which use that location, divided by the number of
facilities located there, as clients going to a location are assumed to be equally
shared between all the facilities at that location.

The clients are non-strategic, and simply use the facility closest to them. The
facilities, on the other hand, choose their locations xi in order to maximize their
utility as defined above. The choices made by the facilities on where they are
positioned determines which locations the clients will use, and thus the utilities
of the facilities themselves. In other words, the facilities are players in a game
where they can choose any x ∈ X as their strategy, and their utility is as defined
above. A pure Nash equilibrium is a solution (i.e., facility placement) in which
no single facility can increase their utility by changing their location.9 It is well
known that a Nash equilibrium may not exist for this classic model [14], and
there are results about equilibrium quality when it does exist as well.

Adding Client Preferences for Facility Synergy As discussed in the Introduction,
we instead consider clients who care both about the distance to xi and the
number of facilities at xi. We choose the simplest model which captures the
essence of such clients, and define the client cost function c(x, xi) = d(x, xi)/ni

to be the cost that a client at x experiences for going to location xi.10 Clients
now choose to go to xi which minimizes the above cost, which increases with the
distance but decreases with ni. With this cost function, clients are indifferent
between going to a location with 1 facility which is distance y away, and going
to a location with 2 facilities which is 2y away. As a first step toward modeling
facility synergy, we consider this natural, since the travel cost per facility visited
remains the same in both. In this new model, Ui is still defined as the set of
clients who choose to use xi, that is, Ui = {x ∈ X : i = argminj c(x, xj)}. ui is
still defined as before, and thus the utility that each facility located at xi receives
is still just ui/ni. The only difference is which locations the clients choose.
7 i is formally defined as an arbitrary index from among all facility stacks.
8 Note that Ui is usually an infinite set. By the “size of Ui”, we mean the total fraction

of clients in Ui compared to X. For example, if Ui consists of all clients in the interval
[ 2
3
, 1], then ui would equal 1

3
. Formally, ui is defined as ui =

∫
x∈Ui

dx.
9 In this paper, we will only focus on pure Nash equilibria, in which facilities must

pick a specific location instead of a randomized strategy.
10 All our results hold in exactly the same way if we instead define c(x, xi) =

d(x, xi)/(γni) for some constant γ.
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Solution Cost and Price of Anarchy We will study the existence of pure Nash
equilibria as well as their quality. Many different measures have been considered
in the literature for the quality of solutions in Hotelling-Downs and similar mod-
els. For our model (as well as the classic model defined above), the total utility of
the facilities always equals |X| = 1, since the clients always go somewhere.11 The
total cost of the clients, however, can be greatly impacted by how the facilities
locate themselves. Because of this, as in the classic model, we consider as our
objective function the total cost of the clients in the solution. More precisely, for
fixed choice of locations by the facilities, we can define the cost of a client at x
to be

c(x) = min
i

c(x, xi).

Then the total client cost is simply∫
x∈X

c(x) dx.

Thus the optimum facility locations are the ones which minimize the above
quantity. It is not difficult to see that in the classic model where c(x, xi) =
d(x, xi), the optimum solution is simply to equally space the facilities inside
the interval, although that solution is not a Nash equilibrium. For our model,
however, where c(x, xi) = d(x, xi)/ni, there can be many optimum solutions, as
discussed in the next section.

We study both the Price of Anarchy and Price of Stability of this game.
The Price of Anarchy is the ratio between the cost of the worst (largest cost)
Nash equilibrium and the cost of the optimum solution. It represents the possible
harm experienced by the clients due to the self-interest of the facilities: if the
facilities form a Nash equilibrium, this is how bad it can be as compared to their
optimum placement, as it would be created by an altruistic central authority.
We also consider the Price of Stability, which looks at the same ratio but uses
the best Nash equilibrium. This represents the cost increase experienced by the
clients if the resulting solution is required to be an equilibrium but could be
chosen in order to minimize client cost.

Properties of the optimum solution

We begin by considering the structure of the optimal facility placement which
minimizes the total client cost. It is not difficult to see that any proportional
spacing of facilities, as defined below, results in an optimum solution. Due to a
lack of space, most of our proofs can be found in the full version of this paper.

Definition 1. A proportional spacing is defined as follows. Given a list of
stacks of facilities where the number of facilities in each stack is ni, we can
iterate through the list and place each stack at position:

xi =
ni

2k
+

i−1∑
j=1

nj

k
.

11 We will use the notation |I| to refer to the length (size) of an interval I.
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Proposition 1. Any proportional spacing has cost 1
4k . Moreover, no other so-

lution has a smaller cost, so proportional spacings are optimal.

Proportional spacings are easy to analyze: they have no bubbles (i.e., the set
of clients using a stack is always a contiguous interval), each stack obtains a total
number of clients equal to ui = ni/k, and thus each facility has utility exactly
1/k. In particular, the following natural placements of facilities are optimal.

Corollary 1. Placing all facilities in a stack of size k at position 1
2 results in

an optimum solution.

Corollary 2. Placing each facility in a separate stack, with the first at position
1
2k and the i’th at position i−1

k + 1
2k results in an optimum solution.

The latter solution is exactly the optimum for the classic Hotelling-Downs
model as well. The former solution is the simplest to analyze: it is simply all the
facilities teaming up to form a giant mall in the middle of the interval, so the
cost of a client located at x is exactly |x− 1

2 |/k.
Although the optimum solutions in this model are not difficult to analyze,

they are not necessarily Nash equilibrium solutions. Nevertheless, we can estab-
lish the following claim, which shows the existence of Nash equilibria in contrast
with the classic model.

Proposition 2. The solution from Corollary 1 is a Nash equilibrium. Thus,
Nash equilibria always exist, and the Price of Stability is 1.

In fact, most of the proportional facility spacings are Nash equilibrium so-
lutions. For example, if each stack is of size at least 2 (no facility is located by
itself), then an optimal solution is a Nash equilibrium. On the other hand, the
solution in Corollary 2 is not a Nash equilibrium, as the first and last facilities
have incentive to move closer to the middle and thus obtain a larger share of the
clients.12

Properties of Nash equilibria

While the best Nash equilibrium solutions are easy to analyze, since they are the
same as optimum solutions, looking at the properties of general Nash equilibria
becomes complex. The main difference compared to the classic model is the
existence of bubbles. To define these formally, we first need to introduce the
notion of core intervals:

Definition 2. Core intervals are the maximal contiguous intervals Ii such
that Ii ⊆ X, xi ∈ Ii and all clients x ∈ Ii are using facility stack i.
12 Similarly to all Nash equilibria in the classic model, the first and last facilities can

never be stacks of size 1 for an optimal solution to be a Nash equilibrium when
k > 1. This is a necessary but not sufficient condition for optimal equilibrium.
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In other words, core intervals are the sets of clients located next to a facility
stack that use this stack. In the classic model, all clients belong to a core interval.
In our model, however, client behavior results in bubbles, which are intervals of
clients that do not belong to any core interval. To illustrate this, and show that
this does, in fact, occur in Nash equilibrium solutions, consider the following
simple example.

Fig. 1. A Nash equilibrium example with a bubble (Example 1). k − 2 facilities are
located at position x1, and 2 facilities at location x2. The blue lines show the client
costs c(x, x1) = |x− x1|/(k− 2) to use facilities at x1, and c(x, x2) = |x− x2|/2 to use
facilities at x2. The clients in interval I2 use facilities at x2, since that gives them the
smallest cost. The clients both in intervals I1 and in B2 use facilities at x1, since that
has the smallest cost for them. Thus, the set B2 forms a “bubble”: a set of clients who
use a facility stack such that they need to pass through another stack to get to it. In
this figure, u1 = |I1|+ |B2| and u2 = |I2|.

Example 1. [Bubble Example] Consider the following solution, as shown in
Figure 1. For ease of presentation, let |X| = 2k− 7− ε; everything can be scaled
equivalently to |X| = 1. Position a stack of n1 = k − 2 facilities at location
x1 = k − 6, and a stack of n2 = 2 facilities at location x2 = 2k − 10. Now
consider what stack the clients located to the right of x2 end up using. It is not
difficult to verify that the clients in the interval [x2, x2 + 2] use the stack at x2,
but the clients in the interval [x2 + 2, x2 + 3 − ε] use the stack at x1 again.13
Thus, the clients in the latter interval form a bubble: they use the stack which
is farther away from them than x2, and are not part of x1’s core interval. The
clients using the stack at x1 consist of many clients next to it (its core interval),
as well as the clients on the other side of x2’s core interval. Moreover, we can
13 It does not matter what facility clients at the boundary between intervals (i.e.,

a location y such that c(y) = c(y, xi) = c(y, xj) where i ̸= j) use, as they only
contribute an infinitesimal amount of utility.
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show that this example is a Nash equilibrium as long as k is large enough, by
considering all possible types of deviations that individual facilities can perform.

Because of the existence of bubbles, we cannot use standard techniques to
analyze the Price of Anarchy for our model. Moreover, even if there were no
bubbles, the equilibrium solutions have different properties than those of the
classic model. It is not difficult to verify, for example, that the solution in Corol-
lary 1 remains a Nash equilibrium even if the stack is not located at exactly
1
2 , but instead deviates from 1

2 by a small distance δ. Because of this, we must
develop a new approach for showing our Price of Anarchy bounds, as we do in
the following section.

3 Price of Anarchy

In this section, we give an outline of our arguments and techniques for estab-
lishing our bound on the Price of Anarchy, and thus on the quality of all Nash
equilibrium solutions in our model. All detailed proofs can be found in the full
version of this paper. We begin with the following very simple property.

Proposition 3. In a Nash equilibrium, the utility of any facility is at most a
factor of 2 away from the utility of any other. More precisely, given stacks of
size ni and nj, it must be that

ui

ni
≥ uj

nj + 1
≥ 1

2
· uj

nj

Proof. This is simply because a facility from the first stack can deviate by moving
on top of the second stack j (which would only increase the amount uj), and get
utility at least uj

nj+1 . However, a facility should not be able to improve its utility
in a Nash equilibrium. ⊓⊔

If there were no bubbles and each stack had to be located in the middle of
its core interval, the above proposition could be used to form a nice bound on
the Price of Anarchy. If ui clients use a stack of size ni, we could simply say that
the total cost of these clients equals∫ ui

x=0

|x− ui

2 |
ni

dx =
u2
i

(4ni)

In our model, however, just because we know approximately how many clients
use a stack does not mean that we have a good bound on the cost that these
clients experience. These clients may be far away from the stack due to being
in a bubble, or the stack could be off-center in its core interval, which increases
the client cost. Because of this, our main goal in this section becomes that of
proving a limit on how much bubbles can affect things, and in particular proving
a limit on the possible sizes of the bubbles.

First, let us prove the following lemma, which will allow us to define bubbles
more precisely.
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Lemma 1. The cost function c(x) = mini{c(x, xi)} between two neighboring
core intervals is either:

1. monotonically increasing
2. monotonically decreasing
3. monotonically increasing and then decreasing

Proof. This follows from the definition of the cost function, c(x), because it is a
minimum over a set of strictly monotone linear functions. Assume that the cost
function between two core intervals does not follow one of the above patterns.
This means that there must be a section of the cost function between these two
points that is convex. Since the cost function is the minimum of linear functions,
there must be a stack of facilities between the two core intervals in order for the
cost function to be lower than it was previously if it will increase again before
the second core interval. This implies that there must be another core interval
in between our two, giving a contradiction. ⊓⊔

Definition 3. A bubble is a maximal contiguous interval that is disjoint from
all core intervals such that the bubble has either a monotonically increasing or a
monotonically decreasing cost function. Note that the cost function in a bubble
can correspond to multiple stacks.

Definition 4. An up bubble is a bubble where the cost function is monotoni-
cally increasing.

Definition 5. A down bubble is a bubble where the cost function is monoton-
ically decreasing.

Lemma 2. Consider the following assignment of bubbles to adjacent core in-
tervals. Assign up bubbles to the core intervals directly to the left of the bubble
and assign down bubbles to the core intervals directly to the right of the bubble.
Then, this assignment is an injective mapping (every core interval has at most
one bubble assigned to it).

Proof Sketch. To prove this, we show that if there is an up bubble directly to
the right of a core interval, then the cost function c(x) at the endpoint of the
core interval adjacent to the bubble must be strictly larger than at the other
endpoint of the core interval. Together with a similar result for down bubbles,
this immediately implies that there cannot be both an up bubble directly to the
right of a core interval and a down bubble directly to the left of it. ⊓⊔

Let Bi be defined as the interval of the bubble assigned to core interval Ii.
Note that the clients in Bi do not use the facilities in Ii in this solution: they
use some facilities farther away; Ii is simply the core interval next to the bubble
Bi. The key component of our proof is the fact that the size of Bi cannot be too
large compared to Ii. Consider Example 1. The bubble on the right has size 1−ε,
and would be assigned to the core interval I2, which has size of approximately
4: 2 to the right of x2 and a bit less than 2 to the left of x2. Thus, the size of
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the bubble is only about 1/4 of the size of the core interval next to it. In the
following, we prove that this is, in fact, the worst case, and no larger bubbles
are possible. We do this through a series of lemmas: see the full version of this
paper for detailed proofs.

Lemma 3. If a stack i is assigned an up (down) bubble Bi, then stack i does
not receive utility from any bubbles to its right (left) hand side.

Lemma 4. Single stacks (i.e., stacks with ni = 1) cannot receive clients or
utility from a bubble.

Lemma 5. If the current solution is a Nash equilibrium, then for each Bi we
have that ni ≥ 2. In other words, a bubble will never be assigned to a single stack.
Although some single stacks may exist in the solution, they will not be assigned
any bubbles in our mapping.

Using the above lemmas, we are able to prove the key property which makes
our bound on the Price of Anarchy possible:

Lemma 6. If the current solution is a Nash equilibrium, then for each bubble
Bi we have that |Bi| ≤ 1

4ui.

The proof of this result is somewhat complex and requires a careful analysis
of how much facilities from Ii would gain by deviating to somewhere in the
middle of bubble Bi (which uses the fact that the stack i itself does not have
any bubbles as derived from Lemma 3), together with the fact that ni ≥ 2
because of the above lemmas. Once we have established that bubbles cannot be
too large, we can proceed to bound the costs of the clients at Nash equilibrium.

Consider an arbitrary Nash equilibrium solution called S, with stack locations
xi and stack sizes ni. Let cS represent the total cost of solution S, and let N
be the set of all stacks for the solution S. Also, let cO be the total cost of the
optimal solution; we know by Proposition 1 that cO = 1

4k . To compare cS and
cO, we compare them to several different intermediate quantities, as follows.

Definition 6. Let c1 be defined as:

c1 =
∑
i∈N

u2
i

2ni

Where each ui and ni represent the same utilities and stack sizes as in solution
S.

Definition 7. Let c2 be defined as:

c2 =
∑
i∈N

[∫
x∈Ii

c(x, xi) dx+

∫
x∈Bi

c(x, xi) dx

]
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Note that c1 and c2 do not represent values of any actual solutions; they are
only convenient values for comparing the total cost of equilibrium and optimum
solutions. For intuition on the quantity c1, consider a new solution in which
there are no bubbles, but each stack still receives the same amount of utility
ui as it does in the equilibrium solution S. Then, c1 is an upper bound on the
maximum possible cost of this solution, where all facilities are at the very start
of their intervals of size ui, and thus the cost of the clients in this interval is
u2
i

2ni
. For intuition on the quantity c2, note that it is the total cost of S if clients

in bubbles instead choose to utilize the stack that the bubble is assigned to by
our mapping, instead of their preferred stack, even though their cost would be
greater.

Lemma 7. cS ≤ c2

Proof. The cost of all clients in core intervals remains the same between both
total costs, thus the only difference is in the cost of the clients in bubbles. For
any bubble Bi, the cost c(x) of any given client x ∈ Bi must be less than c(x, xi)
or else that client would have chosen stack i which we know is not the case due
to Lemma 3. Thus, the value of c2 must be larger since it is increasing the cost
of all clients in bubbles. ⊓⊔

Lemma 8. c2 ≤ 25
16c1

Proof. We will compare the values within both summations for any given i. Let
c2,i =

∫
x∈Ii

c(x, xi) dx +
∫
x∈Bi

c(x, xi) dx and let c1,i =
u2
i

2ni
. We will therefore

show that c2,i ≤ 25
16c1,i. W.L.O.G. assume that all Bi are up bubbles. Here, L(Ii)

and R(Ii) are defined as the leftmost and rightmost points of interval Ii.

c2,i =

∫
x∈Ii

|x− xi|
ni

dx+

∫
x∈Bi

|x− xi|
ni

dx

=
(xi − L(Ii))

2

2ni
+

(R(Ii)− xi + |Bi|)2

2ni

≤ (xi − L(Ii) +R(Ii)− xi + |Bi|)2

2ni

=
(R(Ii)− L(Ii) + |Bi|)2

2ni

=
(|Ii|+ |Bi|)2

2ni
(by the definition of Ii)

≤ (ui + |Bi|)2

2ni
(by the definition of ui)

≤
(ui +

ui

4 )2

2ni
(by Lemma 6)

=
25

16
× u2

i

2ni
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=
25

16
c1,i (by the definition of c1,i)

Since this is true for all i ∈ N , we have shown that c2 ≤ 25
16c1. ⊓⊔

Lemma 9. c1 ≤ 9
4cO

Proof Sketch. Using Proposition 3, we know that ui/ni cannot be too different
from each other, while the optimum solution is the total client cost when ui/ni

are perfectly balanced, i.e., each equals 1/k. This proof does not use game theory
or anything beyond algebra and calculus and simply bounds the largest value
that c1 could have if ui/ni are not too different and if

∑
i∈N ui = 1. This amount

is at most 9
16k , and since cO = 1

4k we obtain a bound of 9
4 . ⊓⊔

Theorem 1. The Price of Anarchy in our setting is at most 225
64 ≈ 3.516.

Proof.

cS ≤ c2 (by Lemma 7)

≤ 25

16
c1 (by Lemma 8)

≤ 25

16
× 9

4
cO (by Lemma 9)

=
225

64
cO

Since our choice of S was arbitrary, this bound holds for all pure Nash equilibria.
⊓⊔

4 Conclusion and Future Directions

In this paper, we introduced and analyzed a new variation of the Hotelling-
Downs model, in which clients do not simply use the closest facility, but instead
prefer sites with many facilities. Because of this, interesting interactions between
facilities begin occurring: the facilities want to be far away from other facilities
so that they get more customers to themselves, but they also want to be close
to other facilities since this might increase the amount of customers they get (by
creating a “destination to visit”). This can also apply to social choice settings,
where political candidates decide whether they want to position themselves as
different from all others (to make themselves unique) or join an existing party (to
“ride on their coat-tails”). Despite Nash equilibria having quite different structure
in our setting than in the classic version, we showed that a good Nash equilibrium
always exists and that the Price of Anarchy is bounded, thus establishing that
Nash equilibrium solutions cannot be very bad as compared with the optimum
facility placement.

Our work is only a first step in the study of what we call “The Mall Effect”,
however, and many open questions and future directions remain. The most im-
mediate one is looking at other cost functions c(x, xi) which increase with the
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distance and decrease with the number of facilities at xi. We believe that the
function c(x, xi) = |x − xi|/ni used in this paper is natural, but many other
cost functions make sense as well. For example, what changes if we consider
c(x, xi) = |x − xi|/(ni)

p for some power p? For p < 1, the properties of this
model become similar to the classic one, and a Nash equilibrium does not al-
ways exist. For p > 1, Nash equilibria always exist, and, in fact, this should help
with the Price of Anarchy as well since this gives further incentive for facilities
to form large stacks. Fully analyzing the Price of Anarchy in this model remains
future work, however. A different type of cost function may give incentive for
clients to go to facilities where many other facilities are nearby, instead of at
exactly the same location.

Another promising direction involves looking at different metric spaces. Al-
though we focused on X being a one-dimensional interval as in most existing
work on this subject, all our results also hold if X were a circle instead. It would
be interesting to consider more general metric spaces, such as two-dimensional
spaces, or facilities which can be located on a graph such as in [19] and [25].
It would also be interesting to consider settings where the set of clients is not
continuous, but instead there is a discrete set of client locations, as well as a
discrete set of possible facility locations, as in [26]. Finally, it would be inter-
esting to combine our client behavior with some of the other variations in the
existing literature, such as putting limits on how far clients are willing to travel
in order to use a facility: if all facilities are too far, they don’t use any facility
at all [17, 30].

Our work initiates the study of facility synergy, thereby shedding light on
potential social processes that can lead to the creation of malls, shopping centers
and downtowns while opening up a new avenue for future research.

Acknowledgments. This work was partially supported by National Science Founda-
tion award CCF-2006286.
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